
NBODY6++
Features of the computer–code

Emil Khalisi, Rainer Spurzem

Astronomisches Rechen–Institut
Mönchhofstr. 12–14, 69120 Heidelberg, Germany

This is an intermediate text version released for the cambody school Aug. 2006.
Please watch for updates on the ftp site given in the text.

Latest update: 9. August 2006

2

Table of contents 3

Table of contents

1 Introduction . 4
2 Code versions . 6
3 Getting started . 7
4 Input variables . 11
5 Thresholds for the variables . 17
6 How to read the diagnostics . 18
7 Runs on parallel machines . 23
8 The Hermite integration method . 24
9 Individual and block time steps . 26
10 The Ahmad–Cohen scheme . 28
11 KS–Regularization . 31
12 Nbody–units . 33
References . 36

4 1 Introduction

1 Introduction

Gravity is an ever–present force in the Universe and is involved into the dynamics of all kinds
of bodies, from the tiny atom to the clusters of galaxies. At small spatial scales, its influence is
covered by other strong forces (e.g. magnetic, pressure, radiation induced), while on the very large
scale it becomes the most dominant power. In astrophysics, it governs the dynamical evolution
of many self–gravitating systems. Here, we concentrate on such systems that are dominated by
mutual gravitation between particles.

The numerical star-by-star simulation of a simple cluster containing some more than hundred
thousand members still places heavy demands on the available hard- and software. A balance has
to be found between two constraints: On one hand the realism, i.e. the input of profound physics,
inclusion of all astrophysical effects as well as the maintenance of the accuracy of calculations;
and on the other hand, the efficiency, i.e. the limitations given by the computational possibilities
and suitable codes to be finished in a reasonable time. Many different kinds of approaches have
been undertaken to suffice both:

• codes based on the direct force integration [2], [5], [6], see also:
http://www.sverre.com/ ,

• statistical models, which themselves divide into several subgroups (Fokker–Planck approxi-
mation by [10]; Monte–Carlo method by [13]; Gas models by [27]),

• usage of high-performance parallel computers [28], [11],

• or the construction of special hardware devoted for these purposes (GRAPE [19], see also:
http://www.astrogrape.org/ and
http://www.ari.uni-heidelberg.de/grace/
http://www.cs.rit.edu/∼grapecluster/ .

The code NBODY6++ described in this manual is designed for an accurate integration of many
bodies (e.g. in a star cluster, planetary system, galactic nucleus) based on the direct integration of
the Newtonian equations of motion. It is optimal for collisional systems, where long times of
integration and high accuracy or both are required, in order to follow with high precision the
secular evolution of the objects.

NBODY6++ is a descendant of the family of NBODY codes initiated by Sverre Aarseth [4],
which has been extended to be suitable for parallel computers [28]. The basic features of the code
increasing the efficiency may be considered under four separate headings: fourth order prediction–
correction method (Hermite scheme), individual and block time–steps, regularization of close en-
counters and few-body subsystems, and a neighbour scheme (Ahmad–Cohen scheme). We briefly
describe these ideas in this booklet, while a detailed description can be found in [3] as well as his
book [6].

While NBODY6++ is not that different from NBODY6 to justify a completely new name, the
user should, however, be aware that in order to make a parallelization of regular and irregular force
computations possible at all, some significant changes in the order of operations became necessary.
As a consequence, trajectories of the same initial system, simulated by NBODY6 and NBODY6++
will diverge from each other, due to the inherent exponential instability and deterministic chaos in
N -body systems. Still one should always expect that the global properties are well behaved in both
cases (e.g. energy conservation). While much effort is taken to keep NBODY6 and NBODY6++
as close as possible this is never 100% the case, and the interested reader should always contact
Sverre Aarseth or Rainer Spurzem if in doubt about these matters.

5

This manual should serve as a practical starter kit for new students working with NBODY6++.
It is not meant as a complete reference or scientific paper; for that see the references and in parti-
cular the excellent compendium of Aarseth’s book on Gravitational N -Body Simulations [6].

Acknowledgements

The authors of this manual would like to express their sincere gratitude to Sverre Aarseth and
Seppo Mikkola, for their continuous support and work over the decades. Also, many students
and postdocs in Heidelberg and elsewhere have contributed towards development, debugging and
improving the software for the benefit of the community. Particular thanks in Heidelberg are due to
Patrick Glaschke, Andreas Ernst, Kristin Warnick, Andrea Borch, Chingis Omarov. This booklet
was written at the Astronomisches Rechen–Institut, ZAH, Univ. of Heidelberg.

6 2 Code versions

2 Code versions

The development of the NBODY–code has begun in the 1960ies [1], though there exist some
earlier precursors [29], [30]. It has set a quasi-standard for the precise direct integration of gravi-
tating many-body systems. There exist several code groups (NBODY1–7, and a number of special
implementations) for different usage, some of which are rather of historical interest.

The NBODY6++ code is available publicly under
ftp://ftp.ari.uni-heidelberg.de/pub/staff/spurzem/nb6mpi/ .
In irregular intervals updates of the code are provided on this ftp-site. These updates implement
changes communicated by S. Aarseth for the standard NBODY6 code (but note that not always
it is possible to implement these updates one-to-one, although a maximum synchronicity between
NBODY6 and NBODY6++ is aimed at), but also genuine updates and bugfixes which apply to
NBODY6++ only. Usually there will be a special README.xxx file provided (where xxx is the
timestamp such as june2003 or mar2005), detailing the changes.

The original N–body codes can be accessed publicly via Sverre Aarseth’s ftp and web sites at
ftp://ftp.ast.cam.ac.uk/pub/sverre/ and http://www.sverre.com/ .

A brief comparison of the code versions:

ITS: Individual time–steps
ACS: Neighbour scheme (Ahmad–Cohen scheme) with block time–steps
KS: KS–regularization of few-body subsystems
HITS: Hermite scheme integration method combined with hierarchical block time steps

ITS ACS KS HITS
NBODY1 •
NBODY2 • •
NBODY3 • •
NBODY4 • •
NBODY5 • • •
NBODY6(++) • • •

7

3 Getting started

The code NBODY6++ is written in Fortran and consists of about 250 files. Their functionality
was improved as well as new routines included all the way through the decades along with the
technological achievements of the hardware. The starting (main) routine is called nbody6.F and
begins as given in Figure 3.1. We will return to the very first operations of this routine later.

To get the code running, you need to download and unpack the package nb6mpi–
version.tar.gz :

homedir> gzip -d -c nb6mpi-version.tar.gz | tar xvf -

A directory will be created containing all the source files (routines and functions). By default the
directory is called nb6mpi-version/ , and it can be renamed to any other name; for example, we
will change it to Nbody for convenience.

Most of the files have the suffix “.f”, some “.F” and a few “.h”. All .f–files are directly
read by a Fortran compiler. The .F’s will pass a pre–compiler first, which selects code lines
separated by pre–compiler options, e.g. between #ifdef PARALLEL and #endif , for
they activate the parallel code on different multi–processor machines. By this, some portability
between different hardware is ensured at least, and a single processor version of the code can
easily be compiled as well. The .h are header–files and declare the variables and their blocks.

The files have to be compiled on the computer you are working at. There are several options
for compilation, and their usage is explained in the Makefile . For example:

homedir> cd Nbody
homedir/Nbody> make nbody6

will apply the standard Fortran compiler on your hardware. Other targets are also specified for
different hardware such as PC clusters, CRAY T3E or Sun parallel machines. Compilations like
make pgf or make pgfp4make use of commercial Fortran compilers and special optimisa-
tion for individual processors. More of them can be created by the user or provided by the authors
on request. The compilation creates machine–readable object files with the suffix .o . The files
are linked to a resulting executable with the name nbody6 . Now, the code is ready to start.

It is recommendable to start the simulations in another folder, e.g. Run/ and copy the exe-
cutable therein. While unpacking, this folder is created by default and some trial files are delivered.
Copy the newly compiled executable to this directory:

homedir/Nbody> cd Run
homedir/Nbody/Run> cp ../nbody6 .

Depending on the user’s individual research, the Nbody code opens a wide field of application
possibilities. The user has to define his model by a number of input control variables, e.g. number
of stars, the size of the cluster, a mass function, profile, and many more. These control variables
are gathered in the file input1000 . The detailed explanation of its handling is given in Chapter
4. Alternatively, a data file named dat.10 can be used, which contains data for an initial confi-
guration (see Ch. ??). If the model criteria are defined, a single processor simulation run is started
with the command

homedir/Nbody/Run> ./nbody6 < input1000 > out1000 &

8 3 Getting started

PROGRAM NBODY6

*

* N B O D Y 6++

* *************

*

* Regularized AC N-body code with triple & binary collisions.

* --

*

* Hermite integration scheme with block-steps (V 4.0.0 April/99).

* --

*

* Developed by Sverre Aarseth, IOA, Cambridge.

* ..

* Message Passing Version NBODY6++ for Massively Parallel Systems

* Developed by Rainer Spurzem, ARI, Heidelberg

*

INCLUDE 'common6.h'

COMMON/STSTAT/ TINIT,NIR,NIB,NRGL,NKS

EXTERNAL MERGE

*

#ifdef PARALLEL

#define MPIINIT 1

#else

#ifdef ENSEMBLE

#define MPIINIT 1

#else

#define MPIINIT 0

#endif

#endif

#if MPIINIT

* Initialize MPI

CALL MPI_INIT(ierr)

CALL MPI_COMM_GROUP(MPI_COMM_WORLD,group,ierr)

CALL MPI_GROUP_SIZE(group,isize,ierr)

CALL MPI_GROUP_RANK(group,rank,ierr)

* PRINT*,' This is rank=',rank,' size=',isize,' group=',group

#endif

*

* Initialize the timer.

CALL CPUTIM(ttota)

*

* Read start/restart indicator & CPU time.

IF(rank.eq.0)READ (5,*) KSTART, TCOMP, TCRITp,

* isernb,iserreg

*

#if MPIINIT

CALL MPI_BCAST(isernb,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(iserreg,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(KSTART,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(TCOMP,1,MPI_REAL,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(TCRITp,1,MPI_REAL,0,MPI_COMM_WORLD,ierr)

*

iserreg = max(isize,iserreg)

isernb = max(isize,isernb)

IF(rank.eq.0)PRINT*,' iserreg,isernb=',iserreg,isernb

#endif

*

IF (KSTART.EQ.1) THEN

*

* Read input parameters, perform initial setup and obtain output.

Figure 3.1: The beginning of the Nbody6–code.

9

In this example, the code reads the control variables given in the file input1000 from Unix
standard input stdin. Then, a star cluster is created according to the user’s instructions, and the
bodies are moved one by one with respect to their time maturity. In NBODY6 they are due one by
one in individual steps (which might be blocked together in groups, though), in NBODY6++ they
are moved simultaneously forward in a group (see Chapter ??). In certain time intervals (controlled
by the user), some first results and error checks are directed via the Unix standard output stdout
to out1000 . This file provides snapshots of the state of the system for a brief overview of some
key data of the simulation to judge about the quality and performance of the run.

There are several more files created, many of them binary files. Most important are comm.1
and comm.2, which contain dumps of the complete common blocks for a restart and checkpoint
purposes, and conf.3 that contains the particle data for the user’s analysis. In the latter, many
details of the run are saved, e.g. positions, velocities, neighbour densities, potential of each particle
in any predefined time interval. The volume of data in all three mentioned files critically depends
on the dimensions of vectors in params.h . Here, the particle data plus some user-defined di-
mensions are given a threshold in order to save disk space when outputting to conf.3 — see
Chapter 5.

At the time of this writing, the user has to provide own routines to postprocess the particle data
from the simulation, using e.g. additional routines or programs (like IDL, gnuplot etc.), in order
to extract the binary data from this file and plot graphics. Work is in progress to provide a better
visual interface delivered with the program.

A run will be finished when one of 4 conditions becomes true:

• the specified CPU–time on the computer is exceeded (variable TCOMP in the input file), or

• the maximum Nbody–time (see Ch. 4) is reached (variable TCRIT), or

• the physical cluster time in Myr is reached (variable TCRITp), or

• the number of cluster stars has fallen below a minimum (variable NCRIT).

A soft termination of a running simulation can be realized by generating of a file STOP in the
executing directory:

homedir/Nbody/Run> touch STOP

In that case, a checkpoint of the code is done, which is located in the routine intgr.F and shown
in Figure 3.2. The program writes out the current variables, saves a complete common dump in

Figure 3.2: Soft interruption of a simulation run in intgr.F: If the dummy file “STOP” exists, then the
run terminates.

10 3 Getting started

comm.1 and terminates. The run can be restarted and continued from the same point where it was
left.

Before a restart, it is recommendable to copy or rename the files, otherwise they may be over-
written. Any file comm.1 and comm.2 is restartable. The different names are just for getting com-
mon dumps at different time units. For example, if an irregular termination takes place, comm.2
contains the data at some earlier time point, while comm.1 always contains the last time data.

To restart a run, a different very short input control data file needs to be used, because most
of the control data are already stored in comm.1 . Only the first line corresponds to the standard
input file, but the first input variable, KSTART, has to be changed to “2” or higher. In this case, the
routine modify.Fwill be entered.

KSTART Function
1 new run, start from initial values given in data.F
2 continuation of a run without changes
3 restart of a run with changes of the following parameters given in

the second line of a newly created input file:
DTADJ, DELTAT, TADJ, TNEXT, TCRIT, QE, J, K
where the options KZ can be changed via KZ(J)=K

4 restart of a run with following parameters changed in the second
line: ETAI, ETAR, ETAU, DTMIN, RMIN, NNBOPT

5 restart of a run with all parameter changes in the run control index
3 and 4. The changes must succeed the first line.

“0” values in the fields are interpreted as: Do not change the value of this parameter. Example: A
new input file

3 10000 1.E6 40 40
0 2.0 0 0 2000 2.0E-06 30 0

will change the values of DELTAT=2.0, TCRIT=2000, QE=2·10−6, and KZ(30)=0 . Note: It is
only possible to change one of the KZ-vector values at a restart.

11

4 Input variables

The input control file of NBODY6++, e.g. in1000, contains a minimum of 83 parameters which
steer one simulation run for its technical and physical properties (it is very similar but not identical
to the one used for NBODY6). As for the technical aspect, the file supervises the run e.g. for
its duration, intervals of the output, or error check; the physical parameters concern the size of
a cluster, initial conditions, or a number of optional features related to the numerical problem to
be studied. The handling of this input file appears rather entangled at first sight, for it has grown
rather historically and “ready–for–use” than customer–oriented. Thus, the input variables are read
by different routines (functions) in the code, and the nature of the parameters are woven with each
other in some cases. Also, some paramters require additional input, such that the total number of
lines and parameters may vary.

In the following, we explain the main input file and give an example of typical values for a
simulation of an isolated globular cluster. Then, we proceed to the thresholds.

in1000:

KSTART TCOMP TCRITp isernb iserreg
N NFIX NCRIT NRAND NNBOPT NRUN
ETAI ETAR RS0 DTADJ DELTAT TCRIT QE RBAR ZMBAR
KZ(1) KZ(2) KZ(3) KZ(4) KZ(5) KZ(6) KZ(7) KZ(8) KZ(9) KZ(10)
KZ(11) KZ(12) KZ(13) KZ(14) KZ(15) KZ(16) KZ(17) KZ(18) KZ(19) KZ(20)
KZ(21) KZ(22) KZ(23) KZ(24) KZ(25) KZ(26) KZ(27) KZ(28) KZ(29) KZ(30)
KZ(31) KZ(32) KZ(33) KZ(34) KZ(35) KZ(36) KZ(37) KZ(38) KZ(39) KZ(40)
BZ(1) BZ(2) BZ(3) BZ(4) BZ(5) BZ(6) BZ(7) BZ(8) BZ(9) BZ(10)
DTMIN RMIN ETAU ECLOSE GMIN GMAX
ALPHA BODY1 BODYN NBIN0 ZMET EPOCH0
Q VXROT VZROT RSPH2
NBIN SEMI0 ECC0 RATIO RANGE NSKIP IDORM

KSTART Run control index
=1: new run (construct new model or read from dat.10)
=2: restart/continuation of a run, needs comm.1
=3: restart + changes of DTADJ, DELTAT, TADJ, TNEXT, TCRIT, QE, KZ
=4: restart + changes of ETAI, ETAR, ETAU, DTMIN, RMIN, NNBOPT
=5: restart containing the combination of the control index 3 and 4

TCOMP Maximum wall-clock time in seconds (parallel runs: wall clock)
TCRITp Termination time in Myrs
isernb For parallel runs: only irregular block sizes larger than this value are executed in

parallel mode (dummy variable for single CPU)
iserreg For parallel runs: only regular block sizes larger than this value are executed in par-

allel mode (dummy variable for single CPU)

N Total number of particles (single + c.m.s. of binaries; < NMAX−2)
NFIX Multiplicator for output interval of data on conf.3 and of data for binary stars

(compare KZ(3) and KZ(6))
NCRIT Minimum particle number (termination criterion)
NRAND Random number seed; any positive integer
NNBOPT Desired optimal neighbour number
NRUN Run identification index

12 4 Input variables

ETAI Time–step factor for irregular force polynomial
ETAR Time–step factor for regular force polynomial
RS0 Initial guess for all radii of neighbour spheres
DTADJ Time interval for parameter adjustment and energy check (in TCR if KZ(35)=0)
DELTAT Time interval for writing output data and diagnostics, multiplied by NFIX

– in units of tcr if KZ(35) = 0;
– in scaled units if KZ(35) > 0.
for DTADJ=DELTAT (recommended) output data is written every adjust time

TCRIT Termination time in units of TCR (if KZ(35)=0)
QE Energy tolerance:

– immediate termination if DE/E > 5*QE & KZ(2) < 1;
– restart if DE/E > 5*QE & KZ(2) > 1;
– termination after second restart attempt, otherwise.

RBAR Scaling unit in pc for radial N–body unit
ZMBAR Scaling unit for average particle mass in solar masses

(in scale-free simulations RBAR and ZMBAR can be set to zero)

KZ(1) COMMON save on unit 1, file comm.1
=1: at end of run
=2: every 100*NMAX steps

KZ(2) COMMON save on unit 2, file comm.2
=1: at output
=2: restart if energy error DE/E > 5*QE

KZ(3) =1: Basic data on conf.3 at output time (frequency NFIX)
KZ(4) Binary diagnostics on bdat.4 (# = threshold levels <10)
KZ(5) Initial conditions of the particle distribution

=0: uniform & isotropic
=1: Plummer random placing

KZ(6) Output of significant and regularized binaries on unit 6
=1: output of regularized and significant binaries (|E|>0.1 ECLOSE)
=2: output of regularized binaries only
=4: output of regularized binaries only, frequency NFIX

KZ(7) Determine Lagrangian radii, routine lagr.F
=2: write to unit 6 (diagnostics)
=3: write to unit 7, file (lagr.7)
=4: write to both units 6 and 7

KZ(8) Primordial binaries, routine binpop.f
=0: (Note possible reading of primordial binaries from
dat.10, if KZ(8)=0, KZ(24)>0, NBIN0>0)
≥ 2: create binary data banks on units 8 and 9
> 3: data on hierarchies on unit 13, file hid.13

KZ(9) Individual bodies printed at output time (MIN(5**KZ9,NTOT))
KZ(10) KS output to unit 6 (diagnostics)

>0: begin
>1: end
≥3: each step

13

KZ(11) Hierarchical systems, routine hiarch.f
=1,3: write to unit 12, file hia.12
=2: create primordial triples, routine hipop.f

KZ(12) HR diagnostics of evolving stars (interval DTPLOT)
KZ(13) Interstellar clouds (<0 or >2: Gaussian velocities)
KZ(14) External force

=1: standard tidal field
>1: reserved for other external field, not implemented yet

KZ(15) Triple, quad, chain (with KZ(30) > 0) or merger search
>1: full output

KZ(16) Updating of regularization parameters (RMIN, DTMIN & ECLOSE)
KZ(17) Modification of ETAI, ETAR (≥ 1) and ETAU (>1) by tolerance QE
KZ(18) Neighbour addition in routine checkl.f

=1: high velocity, LISTV
=2: all types

KZ(19) Mass loss
=1: supernova scheme
=3: Eggleton, Tout & Hurley

KZ(20) Initial mass functions:
=0: self-defined power-law (data.F)
=1: Miller-Scalo-(1979) IMF (imf.f)
=2: KTG (1993) with random pairing (imf2.f)
=3: Eggleton-IMF (imf2.f)
=4: KTG(1993) with binary-ratio (m1/m2)′ = (m1/m2)

0.4 + const.
=5: Eggleton-IMF with binary-ratio, see #4
=6: KTG(1993) extended to Brown Dwarf regime (imfbd.f)

KZ(21) Extra output line (MODEL no., TCOMP, DMIN, AMIN, RMAX & RSMIN)
KZ(22) Initial data of m, r, v on unit 10

=0: uniform or Plummer sphere, see KZ(5)
=1: write initial conditions to diagnostics (scale.F)
=2: input through NBODY–format
=3: input through Tree-format and no scaling (data.F)
=4: input through Starlab-format
=6: input through NBODY-format + Scaling
=7: input through Tree-Format + Scaling
=8: input through Starlab-format + Scaling

KZ(23) Removal of escapers, routine escape.F
=1: from isolated cluster
=2,4: write to diagnostics and to unit 11, file esc.11
=3: clusters with tidal cut–off

KZ(24) Initial conditions for subsystems (routine scale.F)
KZ(25) Partial reflection of KS binary orbit (GAMMA < GMIN; suppressed)
KZ(26) Slow-down of two-body motion

≥1: for KS binary
=2: for chain binary

KZ(27) Two–body tidal interaction (n=1.5: type 3 and 5; n=3: others)
KZ(28) Magnetic braking and gravitational radiation (with KZ(19) and KZ(27))
KZ(29) Boundary reflection for hot system (suppressed)

14 4 Input variables

KZ(30) Chain regularization
=0: no chain regularization
≥=2: main output
>2: write to diagnostics

KZ(31) Centre of mass correction after energy check
KZ(32) Increase of output intervals (based on single particle energy)
KZ(33) Block-step statistics on unit 6 (diagnostics)

>0: if primordial binaries: STEPU
≥1: STEP
=2: STEPR

KZ(34) Roche lobe overflow (not implemented yet)
KZ(35) TIME reset to zero every 100 time units, total time in TTOT
KZ(36) Step reduction for hierarchical systems, routines nbint.f, kepler.f
KZ(37) Fast time-step criterion, routine nbint.f
KZ(38) No force polynomial corrections (I ≤ N)
KZ(39) =2: Shape analysis, routine ellan.f (by Ch. Theis)
KZ(40) Adjust neighbour number to optimal neighbour number, routine regint.f

BK(1) =0: no proto-star evolution
=1: “proto-star” evolution of eccentricity and period in binpop−4new.f

BK(2) = -1: use NBGR and REDUCE in binpop−pk.f
=0: flat distribution in semi–major axis
=1: f=0.034388 · logP
=2: f=3.5 · logP/[100 + (logP)2]; KZ(40)=1,2 are 1st and 2nd iterations
=3: f=2.3 · (logP − 1)/[45 + (logP − 1)2]
=4: f=2.5 · (logP −1)/[45+(logP −1)2]; derived in K2; KZ(40)>0 is used to adjust
neighbour number (adjust.F)
=5: f = Gaussian in logP , Duquennoy & Mayor (1991)

BK(3) unused
BK(4) =1: open and write to unit 15, see ksint.f
BK(5) unused
BK(6) unused
BK(7) unused
BK(8) unused
BK(9) unused
BK(10) unused

DTMIN Time–step criterion for regularization search
RMIN Distance criterion for regularization search
ETAU Regularized time-step parameter (6.28/ETAU steps/orbit)
ECLOSE Binding energy per unit mass for hard binary (positive)
GMIN Relative two-body perturbation for unperturbed motion
GMAX Secondary termination parameter for soft KS binaries

ALPHA Power-law index for initial mass function, routine data.F
BODY1 Maximum particle mass before scaling

15

BODYN Minimum particle mass before scaling
NBIN0 Number of primordial binaries:

– by routine imf2.F using a binary IMF (KZ(20)≥2)
– by routine binpop.F splitting single stars (KZ(8)>0)
– by reading subsystems from unit 10 dat.10 (KZ(24)>0)

ZMET Metal abundance (in range 0.03 - 0.0001)
EPOCH0 Evolutionary epoch (in 106 yrs)

Q Virial ratio (routine scale.F; Q=0.5 for equilibrium)
VXROT XY–velocity scaling factor (> 0 for solid-body rotation)
VZROT Z–velocity scaling factor (not used if VXROT = 0)
RSPH2 Radius of reflecting sphere (see KZ(29); units of RSCALE)

NBIN Number of initial binaries (routine binpop.f)
SEMI0 Initial semi-major axis (= 0 for range of energies)
ECC0 Initial eccentricity

< 0: thermal distribution, f(e) = 2e
0 ≤ ECC0 ≤ 1: fixed eccentricity
=20, 30, 40: see binpop.F

RATIO Mass ratio M1/(M1 + M2)
=1.0: M1 = M2 = 〈M〉

RANGE Defines range of distribution in semi major axis
NSKIP Binary frequency of mass spectrum (starting from body #1)
IDORM Indicator for dormant binaries (>0: merged components)

A typical input file can look like as follows. It defines a new simulation running for 1,000,000
CPU–minutes with N = 1, 000 particles distributed along a Plummer profile (KZ(5)=1). The run
may alternatively terminate when TCRIT=1000.0, or if a final particle number of NCRIT=10 has
been reached. The initial mass function follows a power–law with an index of α = 2.35 (KZ(20)=0
and ALPHA=2.35), ranging from mmax = 5.0 to mmin = 1.0 (BODY1 and BODYN), etc.

1 1000000.0 1.E6 40 40
1000 1 10 183 50 1
0.01 0.02 0.3 10.0 10.0 1000.0 2.0E-05 1.0 0.7
1 1 1 0 1 1 4 0 0 2
1 0 0 0 2 1 0 2 0 0
1 0 2 0 0 2 0 0 0 2
0 0 2 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0
1.0E-04 0.01 0.1 1.0 1.0E-06 0.01
2.35 20.0 0.1 0 0.0 0.0
0.5 0.0 0.0 0.0
0 0.005 -1.0 1.0 5.0 5 0

16 4 Input variables

Input variables for primordial Binaries

Many star clusters contain initial hard binaries with binding energies much larger than the thermal
energy (the threshold ECLOSE is a suitable division between hard and soft binaries). There are
two ways to initialise primordial binaries:

The first one always starts from some initial mass function (IMF) provided by the routines
imf.f or imf2.f. The option KZ(8)>0 invokes the routine binpop.F, which reads the last
line of the input file containing NBIN and the parameters of their distribution (see above). In case
of KZ(8)>0, binaries are created either by random pairing of single stars obtained from the IMF
or by splitting them, depending on the value of KZ(20) — see there.

The second way assumes that particle data, including the binaries, are provided via the input
data on file dat.10 (as e.g. in the Kyoto–II collaborative experiment). In such a case KZ(8)=0
and NBIN=0 should be set, but KZ(24)>0 and NBIN0>0 must be equal to the expected number
of regularized binaries from the file. The code will first create NBIN0 centers of masses, and then
use those for scaling, before regularizing the pairs.

A typical input file with primordial binaries looks as follows. Here, we use binary random
pairing from imf2.f and binpop.F (KZ(20)=2 and KZ(8)=1, respectively) for 200 initial hard
binaries. In the package of the code, the file out1000.binary.comment is included. It was
created from this input file running for 20 time units. Stellar evolution was also switched on in this
file (KZ(12)=1, KZ(19)=3, see below).

1 14400.0 1.e6 40 40
1000 1 10 1042 100 1
0.01 0.02 0.3 10.0 10.0 20.0 2.0E-05 1.0 0.7
1 1 1 0 1 4 4 1 0 2
1 1 0 0 2 1 0 0 3 2
1 0 2 0 0 2 0 0 0 2
0 0 2 0 1 0 1 1 0 1
0 1 2 0 0 0 0 0 0 0
1.0E-04 0.01 0.1 1.0 1.0E-06 0.01
2.3 20.0 0.1 200 2.e-2 0.0
0.5 0.0 0.0 0.0
200 0.005 -1.0 1.0 5.0 5 0

Stellar Evolution

Stellar evolution is invoked by KZ(19) = 1 or 3, offering two different schemes. The simpler one
is KZ(19)=1, while the more complex one, K(19)=3, is based on the Cambridge stellar evolution
school (Hurley, Pols, Tout 2000). Binaries are evolved as single stars without perturbing each
other, any more complex binary evolution is not (yet) supported in NBODY6++. The main effects
are changing stellar masses, radii, and luminosities, which give rise to cluster mass loss. The mass
is assumed to escape from the cluster immediately and possible collisions depend on stellar radii.

With the additional option KZ(12)>0, information on binaries and single stars is written on
two files (unit 82, file bev.82 and unit 83, file sev.83) in regular time intervals determined
by TPLOT. The data for each star in unit 83 comprise of NAME(I), KW, RI, M1, ZL1, which
are name of star, stellar type (see define.f), distance to density centre scaled with core radius,
mass of the star, logarithmic luminosity, and logarithmic radius, respectively.

17

5 Thresholds for the variables

Before the compilation of the code (Chapter 3), the parameter file (params.h) should be consul-
ted to check whether some vector dimensions are in the desired range. Most important are

• the maximum particle number NMAX,

• the maximum number of regularised KS pairs KMAX, and

• the maximum number of neighbours per particle LMAX.

The particles are saved in various lists which serve to distinguish between their funcionality.
The table below and Figure ?? (Figure not finished!!!) explain their nomenclature. “KS–pairs”
are particles that approach each other in a hyperbolic encounter; they are given a special treatment
by the code (see Chapter 11). If NPAIRS is the amount of KS–pairs, then IFIRST = 2*NPAIRS +
1 is the first single particle (not member of a KS pair), and N the last one. NTOT = N + NPAIRS is
the total number of particles plus c.m.’s. Therefore NMAX, the dimension of all vectors containing
particle data should be at least of size N + KMAX, where N is the number of particles and KMAX
the maximum number of expected KS pairs. If one starts with single particles, KMAX = 10 or 20
should usually be enough, but in clusters with a large number of primordial binaries, KMAX must
be large.

N: Total number of particles
NBIN0: number of primordial binaries (physical bound stars)
NBIN: ???
NPAIRS: Number of binaries (KS–pairs, see Chapter ??), transient unbound pairs as well as

persistent binaries
NTOT: = N + NPAIRS;

Number of single particles plus centres of masses of regularized (KS) pairs
KMAX: threshold for the amount of allowed KS pairs
NMAX: = N + KMAX; threshold for the total number of particles and the centre of masses

Hier gibt’s noch ein Bildchen!

18
6

H
ow

to
read

the
diagnostics

6 How to read the diagnostics

The diagnostics is the ASCII readable text printed on unit 6 stdout (“out1000” in Chapter 3) that gives a brief overview of the global status and progress
of the cluster simulation. Different routines write into that file, depending on the options chosen as the input variables. The following lines occur:

N NFIX NCRIT NRAND NNBOPT NRUN

1000 5 10 1006 50 1

ETAI ETAR RS0 DTADJ DELTAT TCRITp TCRIT QE RBAR ZMBAR

1.0E-02 2.0E-02 3.0E-01 1.0E+01 1.0E+01 1.0E+06 2.0E+01 2.0E-05 1.0E+00 7.0E-01

OPTIONS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 1 1 0 1 0 4 0 0 2 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 2 0 0 0 2 0 0 2 0 1 0 1 1 0 1

OPTIONS BK:

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0

DTMIN RMIN ETAU ECLOSE GMIN GMAX

1.0E-04 1.0E-02 1.0E-01 1.0E+00 1.0E-06 1.0E-02

****** NOTE: new random number seed initialisation!
****** AND new ran2 from new ed. of Press et al.

written by the routine:
input.F

Usage: Repetition of the
input variables

STANDARD IMF ALPHA = 2.35 BODY1 = 20.0 BODYN = 0.10 ZMASS = 3.36752E+02 NBIN0= 0 ZMET = 0.00 EPOCH0 = 0.00

...

BINARY STAR IMF: NB = 400 RANGE = 3.27E+01 2.14E-01 ZMB = 3.74E+02 <MB> = 9.36E-01

SINGLE STAR IMF: NS = 1200 RANGE = 7.76E+00 1.01E-01 ZMS = 5.25E+02 <MS> = 4.38E-01

IMF power law index, max. mass, min. mass, total mass, # of primordial bin., metallicity, evolution. epoch [Myrs].
..
number of objects, mass range, average mass before scaling.

data.F,
(if KZ(20)=0 &

BODY16=BODYN)

or

imf2.F, if KZ(20)≥2

Information about initial
mass function (IMF).

19

SCALING: SX = 1.00421D+00 E = -2.49E-01 M(1) = 5.94E-02 M(N) = 2.97E-04 <M> = 1.00E-03

TIME SCALES: TRH = 2.8E+01 TCR = 2.8E+00 2<R>/<V> = 2.8E+00

PHYSICAL SCALING: R* = 1.0000E+00 M* = 7.0000E+02 V* = 1.7348E+00 T* = 5.6466E-01 <M> = 7.0000E-01
SU = 4.4335E+07 AU = 2.0627E+05 YRS = 3.5408E+06

scaling factor for energy, total energy, max. mass, min. mass, average mass after scaling;
Spitzer’s half-mass relaxation time, crossing time obtained from total energy and mass, crossing time obtained from
virial radius (see 12);
information about physical scaling: values of one N–body unit in length (pc), mass (solar masses), velocity (km/s),
time (million years), average mass of particles (solar massses), astronomical units (one N–body unit) and years (one
N–body unit).

scale.F, units.f

fpoly1 time= 0.1200000035762785
fpoly2 time= 0.2100000062584875

CPU (wall clock in parallel execution) time for initialising the force and its time derivative (fpoly1,
fpoly_mpi.f) and the second and third time derivative of the force (fpoly2, fpoly2_mpi.f). The mpi-
versions are called for initialisation in case of parallel runs.

start.F

TIME M/MT: 1.00D-02 2.00D-02 5.00D-02 1.00D-01 2.00D-01 3.00D-01 4.00D-01 5.00D-01 7.00D-01 9.00D-01 1.00D+00 <RC
0.0 RLAGR: 1.52D-01 1.81D-01 1.91D-01 2.83D-01 4.33D-01 5.22D-01 6.17D-01 7.52D-01 1.16D+00 1.96D+00 5.86D+00 2.97D-01
0.0 AVMASS: 6.26D-04 4.26D-03 6.13D-04 9.45D-04 7.82D-04 1.11D-03 1.09D-03 8.35D-04 9.19D-04 1.25D-03 9.01D-04 1.23D-03
0.0 NPARTC: 17 9 2 53 130 90 91 122 216 163 107 90
0.0 SIGR2: 2.19D-01 1.70D-01 7.37D-01 2.44D-01 1.89D-01 2.33D-01 2.16D-01 2.43D-01 1.72D-01 8.36D-02 5.09D-02 2.09D-01
0.0 SIGT2: 2.01D-01 8.25D-02 4.46D-02 2.12D-01 3.39D-01 2.42D-01 1.71D-01 1.83D-01 1.51D-01 1.03D-01 6.16D-02 1.63D-01
0.0 VROT: -8.34D-02 4.41D-01 -6.28D-01 3.14D-02 -1.54D-01 -9.44D-02 -6.45D-02 1.17D-02 5.35D-02 1.98D-02 -3.46D-02 4.46D-01

Time, specification of the Lagrangian radii, core radius
Time, Lagrangian radii, core radius (if primordial binaries: separately for singles and binaries, not shown above)
Time, average mass between Lagrangian radii, avmass in the core
Time, number of particles within the shell, in the core
Time, radial velocity dispersion within the shell, in the core
Time, tangential vel. dispersion within the shell, in the core
Time, rotational vel. within the shell, in the core (not shown above)

lagr.F

20
6

H
ow

to
read

the
diagnostics

0 ADJUST: TIME = 1.00000D+01 T[Myr] = 5.65 Q = 0.52 DE = -1.403819E-05 E = -2.500038E-01 EBIN= 0.000000E+00 EMERGE= 0.000000E+00

rank, “ADJUST:”, total time in NB units, physical time, virial ratio, relative energy error, total energy, total energy of
regularized pairs, energy of mergers

adjust.F

RMIN = 1.1E-03 DTMIN = 3.5E-05 RHOM = 3.5E+02 RSCALE = 9.5E-01 RSMIN = 2.2E-01 ECLOSE = 1.05 TC = 3
PE N ttot treg tirr tpredtot tint tinit tks ttcomm tadj tmov tprednb tsub tsub2 xtsub1 xtsub2
0 1000 41.46000 29.54 7.23 0.63 40.39 0.99 0.07 0.00 0.59 0.00 1.50 0.00 0.00 0.00000D+00 0.00000D+00

close encounter distance and minimum time step (for regularization search, updated from input parameters if
KZ(16)=1), maximum density, virial radius, minimum neighbour sphere, hard binary threshold energy, total run time
in units of initial crossing times
number of processors, number of particles, total processing time, total regular processing, total irregular processing,
processing of prediction, time spent in intgrt.F, for initialisation, for KS integration, for communication, for adjust
and energy check, for overhead of moving data in parallel runs, for neighbour predictions, for MPI communication
after irregular (tsub) and regular (tsub2) blocks, number of bytes transferred respectively. From xtsub1/tsub and xt-
sub2/tsub2 the sustained bandwidth of MPI communication can be read off. Note, that the determination of these
quantities involves a certain overhead by many calls of cputim.F per block, so for critically large production runs
one may want to comment these out (most of them in intgrt.F).

adjust.F

0 T = 10.0 N = 1000 <NB> = 20 KS = 0 NM = 0 MM = 0 NS = 1000 NSTEPS = 1610624 273 321696 1016 DE = -0.140382E-04 E = -0.250004

NRUN = 1 M# = 1 CPU = 6.91000E-01 TRC = 0.0 DMIN = 6.6E-05 6.6E-05 1.0E+02 1.0E+02 AMIN = 1.0E+02 RMAX = 0.0E+00 RSMIN = 0.22 NEFF = 128

<R> RTIDE RDENS RC NC MC RHOD RHOM CMAX <Cn> Ir/R UN NP RCM VCM AZ EB/E EM/E TCR T6
#1 0.95 9.5 0.21 0.08 5 0.073 159. 350. 5. 37.0 0.13 0 0 0.000 0.0000 0.006197 0.000 0.000 2.83 5

NNPRED NBCORR NBFULL NBVOID NRCONV NICONV NBSMIN NBDIS NBDIS2 NCMDER NBDER NFAST NBFAST NBLOCK NBPRED
#2 20204 294307 0 98 2664 9227 1576 0 0 33 0 0 0 58132 3045868

NKSTRY NKSREG NKSHYP NKSPER NPRECT NKSREF NKSMOD NTTRY NTRIP NQUAD NCHAIN NMERG NSTEPT NSTEPQ NSTEPC NBLCKR NBFLUX
#3 14463 45 33 0 0 0 0 0 0 0 0 0 0 0 0 10333 1903963

time, actual particle number, average neighbour number, number of KS pairs, number of merged KS pairs, number of
hierarchical subsystems, number of single stars, step numbers (irregular, irr. c.m., regular, KS), relative energy error
since last output, total energy
several more lines uncommented here....

output.F

21

STEP I 0 3 63 91 154 220 160 133 109 44 19 4
STEP R 0 4 77 133 249 310 179 45 3
Max Speedup Irr: 4 3.76D+00 8 6.82D+00 16 1.14D+01 32 1.66D+01 64 2.15D+01 128 2.49D+01 256 2.66D+01 512 2.74D+01 1024 2.77D+01
Max Speedup Reg: 4 3.71D+00 8 6.69D+00 16 1.12D+01 32 1.67D+01 64 2.22D+01 128 2.62D+01 256 2.91D+01 512 3.04D+01 1024 3.11D+01

histogram of distribution of irregular (STEP I), regular (STEP R)
If there are primordial binaries: step distribution of their internal step (not appearing here, STEP U, in physical time),
statistics of parallel work for irr. and reg. steps, figures given are theoretical speedups for infinitely fast communication
(limit of large block sizes)

levels.f

END RUN TIME[Myr] = 11.29 TOFF/TIME/TTOT= 0.00000000 20.00000000 20.00000000 CPUTOT = 1.6 ERRTOT =-5.15000D-05 DETOT =-1.28197D-05

0 INTEGRATION INTERVAL = 20.00 NIRR= 3237662 NIRRB= 1245 NREG= 779010 NKS= 4625

PER TIME UNIT: NIRR= 1.61883D+05 NIRRB= 6.22500D+01 NREG= 3.89505D+04 NKS= 2.31250D+02
Total CPU= 97.11000289410342

This is the regular end of a run giving: the integration time, total cumulative absolute and relative errors, cumulative
number of regular, irregular, KS steps, the step numbers per time unit and the total CPU (wall clock for parallel) time
in minutes.

adjust.F

22 6 How to read the diagnostics

To check a regular stop of the run, look at the end of the diagnostics first. If there are failures,
the line “CALCULATION HALTED” appears and means that the energy conservation could not
be guaranteed. A restart with smaller steps (ETAI, ETAR) and larger neighbour number NNBOPT
may cure the problem, but not always; persistent problems should be reported to Rainer Spurzem.

The unix command on the output file, e.g.

homedir> grep ADJUST out1000

produces an overview of the accuracy (energy error at every DTADJ interval). It may show where
problems originated; a restart from the last ADJUST before the error with smaller output intervals
is one way to look after it. Watch out, because sometimes errors are not reproducible, because
changes in ADJUST intervals change frequencies of prediction and small differences can build up.
A quick possibility to see the real evolution of the system is to grep for the lines with Lagrangian
radii and other quantities (see above), which can directly be plotted, e.g. with gnuplot, because the
first column is always the time.

23

7 Runs on parallel machines

For parallel runs, the file mpif.h is very important, and system specialists should be consul-
ted in addition to us what to use. Again, for some standard systems templates are provided
(e.g. mpif.t3e.h or mpif.mpich.h). The routine providing CPU–time measurements,
cputim.F , and the use of the function flush.f may need special attention depending on the
hardware.

The Makefile contains support for several common parallel computer architectures, such as
PC Beowulf clusters using the MPICH communication library, CRAY T3E systems, Sun systems,
or parallel IBM clusters using the load leveler system. A brief comment details this on top of the
Makefile in some comment lines.

For an example, on a PC Beowulf cluster one would usually compile by make mpich and run

the code by mpirun -hostfile machines -np n ./nbody6 < input > output

& where n is the number of processors, machines a file containing the list of accessible nodes,

input and output your NBODY files. It has been assumed that the executable file nbody6 has
been copied before, after issuing the make mpich command, into the working directory of the
run. Details are strongly dependent on your local system configuration. For example, a different
flavour of mpirun command (mpirun.rsh) has to be used, also you have to make sure that
your environment variables point to the correct place, such that mpirun and mpif77 (used in
make mpich) point to the correct system location, e.g. that where the correct network hardware
(Infiniband) is used. Check with your sysadmin if unsure. If your local cluster runs a batch system
(e.g. PBS. portable batch system, or IBM load leveller) you have to write and submit a batch job
file, which typically contains some resource specifications in a special form and among other unix
shell commands also the above mpirun command.

24 8 The Hermite integration method

8 The Hermite integration method

Each particle is completely specified by its mass m, position r0, and velocity v0, where the sub-
script 0 denotes an initial value at a time t0. The equation of motion for a particle i is given by its
momentary acceleration a0,i due to all other particles and its time derivative ȧ0,i as

a0,i = −
∑

i6=j

Gmj
R

R3
, (1)

ȧ0,i = −
∑

i6=j

Gmj

[

V

R3
+

3R(V · R)

R5

]

, (2)

where G is the gravitational constant; R = r0,i − r0,j is the relative coordinate; R = |r0,i − r0,j|
the modulus; and V = v0,i − v0,j the relative space velocity to the particle j.

The Hermite scheme employed in NBODY6++ follows the trajectory of the particle by firstly
“predicting” a new position and new velocity for the next time step t. A Taylor series for ri(t) and
vi(t) is formed:

rp,i(t) = r0 + v0(t − t0) + a0,i
(t − t0)

2

2
+ ȧ0,i

(t − t0)
3

6
, (3)

vp,i(t) = v0 + a0,i(t − t0) + ȧ0,i
(t − t0)

2

2
. (4)

The predicted values of rp and vp, which result from this simple Taylor series evaluation, using
the force and its time derivative at t0, do not fulfil the requirements for an accurate high–order
integrator; they just give a first approximation to r1 and v1 at the upcoming time t1. Even if
the time step, t1 − t0, is chosen impracticably small, a considerable error will quickly occur, let
alone the inadequate computational effort. Therefore, an improvement is made by the Hermite
interpolation which approximates the higher accelerating terms by another Taylor series:

ai(t) = a0,i + ȧ0,i · (t − t0) +
1

2
a

(2)
0,i · (t − t0)

2 +
1

6
a

(3)
0,i · (t − t0)

3, (5)

ȧi(t) = ȧ0,i + a
(2)
0,i · (t − t0) +

1

2
a

(3)
0,i · (t − t0)

2. (6)

Here, the values of a0,i and ȧ0,i are already known, but a further derivation of equation (2) for
the two missing orders on the right hand side turns out to be quite cumbersome. Instead, one
determines the additional acceleration terms from the predicted (“provisional”) rp and vp; we
calculate their acceleration and time derivative according to the equations (1) and (2) anew and
call these new terms ap,i and ȧp,i, respectively. Because these values ought to be generated by
the former high–order terms also (which we avoided), we put them into the left–hand sides of (5)
and (6). Solving equation (6) for a

(2)
0,i , then substituting it into (5) and simplifying yields the third

derivative:

a
(3)
0,i = 12

a0,i − ap,i

(t − t0)3
+ 6

ȧ0,i + ȧp,i

(t − t0)2
. (7)

Similarly, substituting (7) into (5) gives the second derivative:

a
(2)
0,i = −6

a0,i − ap,i

(t − t0)2
− 2

2ȧ0,i + ȧp,i

t − t0
. (8)

25

Note, that the desired high–order accelerations are found just from the combination of the low–
order terms for r0 and rp. We never derived higher than the first derivative, but achieved the higher
orders easily through (1) and (2). This is called the Hermite scheme.

Previously, a four–step Adams–Bashforth–Moulton integrator was used (especially in NBO-
DY5, [2]), however, the new Hermite scheme allows twice as large timesteps for the same accuracy.
Also its storage requirements are less [16], [17], [4], [5].

Finally, we extend the Taylor series for ri(t) and vi(t), eqs. (3) and (4), by two more orders,
and find the “corrected” position r1,i and velocity v1,i of the particle i at the computation time t1
as

r1,i(t) = rp,i(t) + a
(2)
0,i

(t − t0)
4

24
+ a

(3)
0,i

(t − t0)
5

120
, (9)

v1,i(t) = vp,i(t) + a
(2)
0,i

(t − t0)
3

6
+ a

(3)
0,i

(t − t0)
4

24
. (10)

The integration cycle for other upcoming steps may now be repeated from the beginning, eqs. (1)
and (2). The local error in r and v within the two time steps ∆t = t1 − t0 is expected to be of
order O(∆t5), the global error for a fixed physical integration time scales with O(∆t4) [15].

26 9 Individual and block time steps

9 Individual and block time steps

Stellar systems are characterized by a huge dynamical range in radial and temporal scales. The
time scale varies e.g. in a star cluster from orbital periods of binaries of some days up to the
relaxation of a few hundred million years, or even billions of years. Even if we put for a moment the
very close binaries aside, which are treated differently (by regularization methods), there typically
is a large dynamic range in the average local stellar density from its centre to the very outskirts,
where it dissolves into the galactic tidal field. In a classical picture, the two closest bodies would
determine the time–step of force calculation for the whole rest of the system. However, for bodies
in regions where the changes of the force are relatively small, a permanent re–computing of the
terms appears time consuming. So, in order to economize the calculation, these objects shall be
allowed to move a longer distance before a recomputation becomes necessary. In between there
is always the possibility to acquire particle positions and velocities via a Taylor series prediction,
as described in Chapter 8. This is the idea of a vital method for assigning different time–steps,
∆t = t1 − t0, between the force computations, the so–called “individual time–step scheme” [1],
which was later advanced to the hierarchical block steps.

0 1 2 4 8 time steps 16

- - - - - - - - - - - - - -

- - - - - -

- - - - - - - -

- -

i

k

l

m

particles

Figure 9.1: Block time steps exemplary for four particles.

Each particle is assigned its own ∆ti which is first illustrated for the case of “block time–steps”
in Figure 9.1. The particle named i has the smallest time step at the beginning, so its phase space
coordinates are determined at each time step. The time step of k is twice as large as i’s, and its
coordinates are just extrapolated (“predicted”) at the odd time steps, while a full force calculation
is due at the dotted times. The step width may be altered or not after the end of the integration
cycle for the special particle, as demonstrated for k and l beyond the label “8”. The time steps
have to stay commensurable with both, each other as well as the total time, such that a hierarchy
is guaranteed. This is the block step scheme.

As a first estimate, the rate of change of the acceleration seems to be a reasonable quantity
for the choice of the time step: ∆ti ∝

√

ai/ȧi. But it turns out that for special situations in a
many-body system, it provides some undesired numerical errors. After some experimentation, the
following formula was adopted [2]:

∆ti =

√

√

√

√η
|a1,i||a(2)

1,i | + |ȧ1,i|2

|ȧ1,i||a(3)
1,i | + |a(2)

1,i |2
, (11)

27

where η is a dimensionless accuracy parameter which controls the error. In most applications it is
taken to be η ≈ 0.01 to 0.02, see also next chapter.

For the block–time steps, the synchronization is made by taking the next–lowest integer of ∆ti;
the time steps are quantized to powers of 2 [15]. Then, there will be a group (block) of several
particles which are due to movement at each time step. If one keeps the exact ∆ti’s evaluated
from (11) for each particle, the commensurability is destroyed, and we arrive at the so–called
“individual time steps”; in this case, there exists one sole particle being due. The latter concept
is realized in the earlier codes NBODY1, NBODY3, NBODY5, where a neighbour scheme is
renounced. NBODY4, NBODY6, and NBODY6++ use a block step scheme.

Subsystems like star binaries, triples or a similar subgroups (they are termed KS pairs, chains,
hierarchies) enter the time–step scheme with their respective centre’s of masses only. Their internal
motion is treated in a different way by a regularized integration (Chapter 11).

28 10 The Ahmad–Cohen scheme

10 The Ahmad–Cohen scheme

The computation of the full force for each particle in the system makes simulations very time–
consuming for large memberships. Therefore, it is desirable to construct a method in order to
speed up the calculations while retaining the collisional approach. One way to achieve this is to
employ a “neighbour scheme”, suggested by [9].

The basic idea is to split the force polynomial (5) on a given particle i into two parts, an
irregular and a regular component:

ai = ai,irr + ai,reg. (12)

The irregular acceleration ai,irr results from particles in a certain neighbourhood of i (in the code,
FI and FIDOT are the irregular force and its time derivative at the last irregular step; internal-
ly some routines use FIRR and FD as a local variable). They give rise to a stronger fluctuating
gravitational force, so it is determined more frequently than the regular one of the more distant
particles that do not change their relative distance to i so quickly (in the code, FR and FRDOT
are the regular force and its time derivative at the last regular step; some routines use as a local
variable FREG and FDR). We can replace the full summation in eq. (1) by a sum over the Nnb

nearest particles for ai,irr and add a distant contribution from all the others. This contribution is
updated using another Taylor series up to the order FRDOT, the time derivative of FR at the last
regular force computation1 .

Wether a particle is a neighbour or not is determined by its distance; all members inside a
specified sphere (“neighbour sphere” with radius rs) are held in a list, which is modified at the end
of each “regular time–step” when a total force summation is carried out. In addition, approaching
particles within a surrounding shell satisfying R · V < 0 are included. This “buffer zone” serves
to identify fast approaching particles before they penetrate too far inside the neighbour sphere.
The neighbour criterion should be improved according to relative forces rather than distances, in
particular, if there are very strong mass differences between particles (black holes!) — such kind
of work is under progress.

Figures 10.1 and 10.2 show how the Ahmad–Cohen scheme works for one particle [17]. At
the beginning of the force calculation, a list of neighbour objects around the particle i is created
first (filled dots). From this neighbour list the irregular component ai,irr is calculated, and then the
summation is continued to the distant particles obtaining ai,reg. At the same time we also calculate
the first time derivative. From the equations (5) and (6) the position and velocity of the particle
i are predicted. At time t1,irr we apply the “corrector” only for ai,irr from the neighbours; the
regular component we do not correct, but obtain by extrapolating ai,reg. At the next step, t2,irr, the
same predictor–corrector method proceeds for the neighbour particles, while the correction of the
distant acceleration term is still neglected. When t1 is reached, the total force is calculated on the
basis of the full application of the Hermite predictor–corrector method. Also, a new neighbour list
is constructed using the positions at time t1. Thus, we calculate at certain times only the forces
from neighbours (irregular time–step, tirr), while at other times we calculate both the forces from
neighbours and distant particles (regular time–step, treg).

For a neighbour list of size Nnb � N , this procedure can lead to a significant gain in efficiency,
provided the respective time scales for ai,irr and ai,reg are well separated.

1Note, that the code also keeps the variables F and FDOT, which contain one half (!) of the total force, and one sixth
(!) of the total time derivative of the force; this just a handy assignment for the frequent predictions of equation 3.

29

∗�•

•

•

•

•
•

•

•

�

rs

◦

◦◦ ◦
◦

◦◦
◦

◦

◦

◦

◦

◦◦

◦

◦◦
◦

◦
◦

◦◦

◦

◦
◦

◦

◦◦
◦ ◦

Figure 10.1: Illustration of the neighbour scheme for particle i marked as the asterisk (after [2]).

The actual size of neighbour spheres in NBODY6++ is controlled iteratively by a requirement
in order to keep a certain optimal number of neighbours. This variable, NNBOPT, can be adjusted
according to performance requirements. Its typical values are between 50 and 200 for a very wide
range of total particle numbers N . Outside of the half-mass radius, the requirement of having
NNBOPT neighbours is relaxed due to low local densities. Insisting on NNBOPT neigbours could
result in undesired large amplitude fluctuations of the neighbour radii.

While [18] claim that the optimal neighbour number should grow as N 3/4 (which would be
unsuitable for the performance on parallel computers), this is still an unsettled question. [2] advo-
cates the coupling of the neighbour radius to the local density contrast, but NBODY6++ does not
use that, since it makes average neighbour numbers much less predictable, which is bad for the
performance and profiling issues on supercomputers, again.

Resuming, the method of the two particle groups is squeezed into the hierarchical time–step
scheme making the overall view quite complex. Each particle is moved due to its time–step order
and the time–steps, because the force calculation is divided: In eq. (11) a further subscript is
needed which distinguishes the regular and irregular time step. The accuracy can be tuned by

t1,irr t2,irr ... t1∗,irr t2∗,irr

t0 t1 t2

-�
∆tirr

� ∆treg
-

Figure 10.2: Regular and irregular time steps (after [17]).

30 10 The Ahmad–Cohen scheme

ηirr ≈ 0.01 and ηreg ≈ 0.02, again.
Both, the neighbour scheme and the hierarchical time–step scheme have in common that they

are centered on one particle i, and they distinguish between nearby and remote stars, and they
save computational time. One may ask: What is the intriguing difference between them? — The
neighbour scheme is a spatial hierarchy, which avoids a frequent force calculation of the remote
particles, because their totality provides a smooth potential which does not vary so much with
respect to the particle i; that potential is rather superposed by some fluctuating peaks of close–by
stars which will be “worked in” by the more often force determination. The time step scheme,
in contrast, exhibits the temporal behaviour of the intervals for re–calculation of the full force
in order to maintain the exactness of the trajectory; time steps chosen too small slow down the
advancing calculation losing the computer’s efficiency.

31

11 KS–Regularization

The fourth main feature of the codes since NBODY3 is a special treatment of close binaries. A
close encounter is characterised by an impact parameter that is smaller than the parameter for a 90
degree deflection

p90 = 2G(m1 + m2)/v
2
∞ (13)

where G, m1, m2, v∞ are the gravitational constant, the masses of the two particles and their
relative velocity at infinity. In the cluster centre, it is very likely that two (or even more) stars
come very close together in a hyperbolic encounter. As the relative distance of the two bodies
becomes small (R → 0), their timesteps are reduced to prohibitively small values, and truncation
errors grow due to the singularity in the gravitational potential, eqs. (1) and (2). In the NBODY
code, the parameter RMIN is used to define a close encounter, and it is kept to the value of equation
13 (if KZ(16) > 0 is chosen in the control parameters). The corresponding time step DTMIN can
be estimated from

dtmin = κ
[η

0.03

](r3
min

〈m〉
)1/2

(14)

where κ is a free numerical factor, η the general time step factor, and 〈m〉 the average stellar mass
[2]. If two particles are getting closer to each other than RMIN, and their time steps getting smaller
than DTMIN, then they are candidates for “regularization”.

Regularization is an elegant trick in order to deal with such particles which are as close as the
diamond in the Figure 10.1. The idea is to take both stars out of the main integration cycle, replace
them by their centre of mass (c.m.) and advance the usual integration with this composite particle
instead of resolving the two components. The two members of the regularized pair (henceforth KS
pair) will be relocated to the beginning of all vectors containing particle data, while at the end one
additional c.m. particle is created (see below). One of the purposes of the code variable NAME(I)
is to identify particles after such a reshuffling of data.

To be actually regularized, the two particles have to fulfil two more sufficient criteria: that they
are approaching each other, and that their mutual force is dominant. In the equations in routine
search.f, these sufficient criteria are defined as

R ·V > 0.1
√

(G(m1 + m2)R

γ :=
|apert|·R2

G(m1+m2) < 0.25

Here, apert is the vectorial differential force exerted by other perturbing particles onto the two
candidates, R, R, V are scalar and vectorial distance and relative velocity vector between the two
candidate, respectively. The factor 0.1 in the upper equation allows nearly circular orbits to be
regularized; γ < 0.25 demands that the relative strength of the perturbing forces to the pairwise
force is one quarter of the maximum. These conditions describe quantitatively that a two-body
subsystem is dynamically separated from the rest of the system, but not unperturbed.

The internal motion of a KS pair will be determined by switching to a different (regularized)
coordinate system. This transformation can be traced back to the square in quaternion space, where
— by sacrificing some commutativity rules — it is guaranteed that the real-space motion does not
leave the three-dimensional Cartesian space. It involves a set of four regular spatial coordinates
and a fictitious time s(t), obtained in its simplest variant by the transformation dt = Rds. Any
unperturbed two–body orbit in real space is mapped onto a harmonic oscillator in KS–space with
double the frequency. Since the harmonic potential is regular, numerical integration with high
accuracy can proceed with much better efficiency, and there is no danger of truncation errors for
arbitrarily small separations. The internal time–step of such a KS–regularized pair is independent

32 11 KS–Regularization

of the eccentricity and, depending on the parameter ETAU, of the order of some 50–100 steps
per orbit. The method of regularization goes back to [14] and makes an accurate calculation of a
perturbed two–body motion possible. A modern theoretical approach to this subject can be found
in [25]; the Hamiltonian formalism of the underlying transformations is nicely explained in [20].

While regularization can be used for any analytical two–body solution across a mathematical
collision, it is practically applied to perturbed pairs only. Once the perturbation γ falls below a
critical value (input parameter GMIN ≈ 10−6), a KS–pair is considered unperturbed, and the
analytical solution for the Keplerian orbit is used instead of doing numerical integration. A little
bit misleading is that such unperturbed KS–pairs are denoted in the code as ”mergers”, e.g. in the
number or merges (NM) and the energy of the mergers (EMERGE). Merged pairs can be resolved
at any time if the perturbation changes. The two–body KS regularization occurs in the code either
for short-lived hyperbolic encounters or for persistent binaries.

In the code, the KS–pair appears as a new particle at the postion of the centre of mass. The va-
riable NTOT, that contains the total number of particles N plus the c.m.’s, is increased by 1. When
the pair is disrupted, NTOT is decreased again. The maximum number of possible KS–pairs is
saved in the variable KMAX, which sets a threshold for the extension of the vector NTOT (see
Chapter 5).

Close encounters between single particles and binary stars are also a central feature of clu-
ster dynamics. Such temporary triple systems often reveal irregular motions, ranging from just a
perturbed encounter to a very complex interaction, in which disruption of binaries, exchange of
components and ejection of one star may occur. Although not analytically solvable, the general
three–body problem has received much attention. So, the KS–regularization was expanded to the
isolated 3– and 4–body problem, and later on to the perturbed 3–, 4–, and finally to the N–body
problem. The routines are called

• triple.f (unperturbed 3-body subsystems, [8]),

• quad.f (unperturbed 4-body subsystems), and

• chain.f with different stages of implementation (slow-down, Stumpff functions, see for
consecutive references Mikkola & Aarseth 1990, 1993, 1996, 1998, and [20]).

While occurrences of “triple” and “quad” will be rare in a simulation, the chain regularization is
invoked if a KS–pair has a close encounter with another single star or another pair. Especially,
if systems start with a large number of primordial binaries, such encounters may lead to stable
(or quasi-stable) hierarchical triples, quadruples, and higher multiples. They have to be treated
by using special stability criteria. Some of them are actually already implemented, but there is
ongoing research and development in the field.

A typical way to treat all such special higher subsystems is to define their c.m. to be a pseudo-
particle, i.e. a particle with a known sub-structure (very much like nodes in a TREE code). The
members of the pseudo-particles will be deactivated by setting their mass to zero (ghost particles).
At present there can only exist one chain at a time in the code, while merged KS binaries, and
hierarchical subsystems can be more frequent. Details of these procedures are beyond the scope
of this introductory manual.

Every subsystem — KS pair, chain or hierarchical subsystem — is perturbed. Perturbers are
typically those objects that get closer to the object than Rsep = R/γ

1/3
min, where R is the typical

size of the subsystem; for perturbers, the components of the subsystem are resolved in their own
force computation as well (routines cmfreg.f, cmfirr.f).

33

12 Nbody–units

The NBODY–code uses Dimensionless units, so–called “Nbody units”. They are obtained when
setting the gravitational constant G and the initial total cluster mass M equal to 1, and the initial
total energy E to −1/4 (see [12], [7]).

Since the total energy E of the system is E = K + W with K = 1
2M〈v2〉 being the total

kinetic energy and W = −(3π/32)GM 2/R the potential energy of the Plummer sphere, we find
from the virial theorem that

E =
1

2
W = −3π

64

GM2

R
. (15)

R is a quantity which determines the length scale of a Plummer sphere. Using the specific defini-
tions for G, M , and E above, this scaling radius becomes R = 3π/16 in dimensionless units. The
half mass radius rh can easily be evaluated by the formula (e.g. [26]):

M(r) = M
r3/R3

(1 + r2/R2)3/2
(16)

when setting M(rh) = 1
2M . It yields rh = (22/3 − 1)−1/2R = 1.30R. The half–mass radius is

located at R = 0.766, or about 3/4 “Nbody–radii”.
The virial radius of a system is defined by Rvir = GM2/2|W |, while the r.m.s. velocity is

〈v2〉1/2 = 2K/M . In virial equilibrium |W | = 2K , so it follows for the crossing time

tcr :=
2Rvir

〈v2〉1/2
=

GM5/2

(2|E|)3/2
. (17)

The setting of G = M = 1 and E = −0.25 also determines the unit of time; so it follows that
tcr = 2

√
2 in N -body units. By inversion we have

τNB =
GM5/2

(4|E|)3/2
, (18)

for the unit of time τNB. The virial radius of Plummer’s model is Rvir = 1 in N -body units.

34 Flow chart

nbody6.F

read init. parameters

KSTART = 1 ?yesnew run

?

no restart

?

start.F mydump.F

zero.f

input.F

data.F

scale.F

units.f

binpop.f

iblock.f

nblist.f

fpoly1.f

fpoly2.f

KSTART > 2 ?
no

restart without
any changes

?

yes

modify.F

restart with
some small changes

adjust.F

output.F

- �intgrt.F

Flow chart 35

intgrt.F

Determine group of particles
due to be advanced;

create list: NXTLST(I)

short.f create a sublist of
shortest times steps

IKS > 0 ? -yes set IPHASE = 1
?

no

TIME > TADJ ? -yes
set IPHASE = 3

?
no

TIME > TNEXT ?
-yes

output.F�

?
no

TIME > TPREV ?
-yes

subint.f�

?
no

STEP(I)<DTMIN ? -yes
search.f�

?
no

NXTLEN > 10 ? yes

?
no

nbsort.f
partial
predict.

prediction of all
particles not

to be corrected
�

nbint.f

treg+dtreg=TIME? -yes
regint.f�

no

Update new positions
and velocities

Termination ?

yes

STOP

no
-

Continue acc. to IPHASE:

1: ksreg.f
2: ksterm.f
3: adjust.f
4: triple.f
5: quad.f
6: merge.f
7: reset.f
8: chain.f

�

?

36 References

Literaturverzeichnis

[1] Aarseth S.J. (1963): Mon. Not. Roy. Astron. Soc. 126, p223

[2] Aarseth S.J. (1985): “Direct methods for N–body simulations”, in: Multiple Time Scales,
Brackbill J. & Cohen B. (eds.), Ch. 12, p377

[3] Aarseth S.J. (1993): “Direct methods for N–body simulations”, in: Galactic Dynamics and
N–body simulations, Contopoulos G. et. al. (eds.), Symposium in Thessaloniki, Greece

[4] Aarseth S.J. (1999a): Publ. Astron. Soc. Pac. 111, p1333

[5] Aarseth S.J. (1999b): Celect. Mech. Dyn. Astron. 73, p127

[6] Aarseth S.J. (2003): “Gravitational N–Body Simulations, Tools and Algorithms”, Cam-
bridge University Press, 430 pages, ISBN 0521432723

[7] Aarseth S.J., Hénon M., Wielen R. (1974): Astron. Astrophys. 37, p183

[8] Aarseth S.J., Zare . (1974): Celest. Mech. 10, p185

[9] Ahmad A. & Cohen L. (1973): J. Comput. Phys. 12, p389

[10] Cohn H. (1980): ApJ 242, p765

[11] Dorband E.N., Hemsendorf M., Merritt D. (2003): J. Comput. Phys. 185, p484–511

[12] Heggie D.C. & Mathieu R.D. (1986): “Standardised units and time scales”, in: The Use of
Supercomputers in Stellar Dynamics, Hut P. & McMillan S. (eds.), p233

[13] Hénon M. (1971): Astrophys. Space Sci. 14, p151

[14] Kustaanheimo P. & Stiefel E.L. (1965): J. für Reine Angewandte Mathematik 218, p204

[15] Makino J. (1991a): Publ. Astron. Soc. Japan 43, p859

[16] Makino J. (1991b): ApJ 369, p200

[17] Makino J. & Aarseth S.J. (1992): Publ. Astron. Soc. Japan 44, p141

[18] Makino J. & Hut, P. (1988): ApJ Suppl. 68, p833

[19] Makino J., Taiji M., Ebisuzaki T., Sugimoto D. (1997): ApJ 480, p432–446

[20] Mikkola S. (1997): “Numerical Treatment of Small Stellar Systems with Binaries”, in:
Visual Double Stars: Formation, Dynamics and Evolutionary Tracks, Docobo J.A., Elipe
A., & McAlister H. (eds.), p269

[21] Mikkola S. & Aarseth, S.J. (1990): Celest. Mech. Dyn. Ast. 47, p375

[22] Mikkola S. & Aarseth, S.J. (1993): Celest. Mech. Dyn. Ast. 57, p439

[23] Mikkola S. & Aarseth, S.J. (1996): Celest. Mech. Dyn. Ast. 64, p197

[24] Mikkola S. & Aarseth, S.J. (1998): New Astronomy 3, p309

References 37

[25] Neutsch W. & Scherer K. (1992): “Celestial Mechanics”, Bibliographisches Institut, 484
pages, ISBN 3411154810

[26] Spitzer L. jr. (1987): Dynamical Evolution of Globular Clusters, Princeton University
Press, New Jersey, USA

[27] Spurzem R. (1994): “Gravothermal Oscillations”, in: Ergodic Concepts in Stellar Dyna-
mics, Gurzadyan V.G. & Pfenniger D. (eds.), p170

[28] Spurzem R. (1999): J. Comput. Appl. Math. 109, p407

[29] von Hoerner S. (1960): Zeitschrift f. Astrophysik 50, p184–214

[30] von Hoerner S. (1963): Zeitschrift f. Astrophysik 57, p47–82

